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Generalizations of S� leszyn� ski�Pringheim's convergence criteria for ordinary
continued fractions are proved for noncommutative continued fractions in Banach
spaces. Some of them are exact generalizations of the scalar results. � 1996 Academic

Press, Inc.

1. Introduction

We consider expressions of the form

A1(B1+A2( } } } )&1 C2)&1 C1 (1)

where An , Bn , Cn are elements of a complex Banach algebra M, called non-
commutative continued fractions. They occur in computations of various
mathematical and physical problems, for example in control theory for
expansion of the transfer function of multivariate control systems, as
solution of quadratic equations in Banach spaces, also in numerical
mathematics for calculation of square roots of matrices, in theoretical
physics for investigations of the Brownian motion and of the anharmonic
oscillator eigenvalues as well as in perturbation theory. An extensive bibli-
ography of their applications we find in [1].

The object of this paper are generalizations of the well-known
S� leszyn� ski�Pringheim convergence criteria for ordinary continued fractions
cf. [5].

A first result, which is related to one of S� leszyn� ski�Pringheim's
Theorems is given by Denk and Riederle [1]. However they need an
additional condition, so it is inconvenient to apply and for creation of
other criteria like in the scalar case.

The new convergence criteria for noncommutative continued fractions,
contained in this paper, are closely connected with the main results of
S� leszyn� ski�Pringheim, in some cases they are even exact generalizations.
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2. Definitions and Notations

Throughout this paper M denotes a complex non-commutative Banach
algebra with norm & } &, identity E and &E&=1. M* will be the set of
invertible elements of M.

Definition 1. For k # N let Sk : Nk � M, Nk �M,

Sk(X ) :=Ak(Bk+X )&1 Ck , where Ak , Bk , Ck # M.

If Rn :=S1 b } } } b Sn(0) exists we call Rn the n th approximant of (1). If
Rn exists for all n # N and limn � � Rn=R # M then we say (1) converges
and has the value R. We write

A1(B1+A2( } } } )&1 C2)&1 C1=R.

If Rn is well-defined we have

Rn=A1(B1+A2( } } } (Bn&2+An&1(Bn&1

+AnB&1
n Cn)&1 Cn&1)&1 } } } )&1 C2)&1 C1 .

In order to discuss the behaviour of the functions Sk , we define a new
distance on the ball K$ :=[X # M | &X&<$] with a suitable $<1, which
has originally been introduced by Earl and Hamilton [2] and Hayden and
Suffridge [4]:

A function f : K$ � M is called differentiable in K$ , if its Freche� t
derivative Df (X ) exists for all X # K$ .

For differentiable f let Df (X )[Y] be the Freche� t-Differential of f in
X # K$ . f is called continuously differentiable in K$ , if the mapping
Df : X � Df (X ) is continuous for all X # K$ . Now let F$ be the set of all
continuously differentiable functions f : K$ � K$ . For X # K$ , Y # M we
define

:$(X, Y ) :=sup
f # F$

&Df (X )[Y]&.

Let # be a continuously differentiable curve in K$ with # : [0, 1] � K$ and
#(0)=X #(1)=Y. For the set of all such curves we write C1(X, Y ). Then
the $-length of # is defined as

L$(#) :=|
1

0
:$(#(t), #$(t)) dt

and the $-distance between X and Y # K$ as

\$(X, Y ) := inf
# # C1(X, Y )

L$(#).
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Lemma 1 (Properties of \$(X, Y ) [4]).

(i) For X, Y # K$$ , $$<$, we have

&X&Y&�\$(X, Y )�
2$

$&$$
&X&Y&

(ii) Let h # F$ be a function, such that for some c>0

g: K$ � K$ , Y [ h(Y )+c(h(Y )&h(X )) is # F$ for all X # K$ ,

then \$(h(X ), h(Y ))�
1

1+c
\$(X, Y ) for all X, Y # K$ .

3. Convergence Theorems

We consider the function

S(X )=A(B+X )&1 C, A, C # M, B # M*

and require that

&AB&1& &C&�(1&=)(1&&B&1&) holds for some =>0.

Then for all X # K1&=�2 the Neumann series implies: S(X ) is well defined
and &S(X )&�1&=.

It is easily seen that its Freche� t-Differential

DS(X )[Y]=&A(B+X )&1 }Y(B+X )&1 C is continuous for all
X # K1&=�2 and Y # M, so that S # F1&=�2 .

On the other hand the function

g(Y ) :=S(Y )+(=�4)(S(Y )&S(X )) # F1&=�2 for all X # K1&=�2 and so
by Lemma 1 we have

\1&=�2(S(X ), S(Y ))�
1

1+=�4
\1&=�2(X, Y ) for all X, Y # K1&=�2 .

This property is fundamental to the following

Theorem 1. Let (An), (Bn), (Cn) be sequences with An , Cn # M,
Bn # M* \n # N, suppose that for some =>0 and for each n # N either

&AnB&1
n & &Cn&�(1&=)(1&&B&1

n &) (2)

or

&An& &B&1
n Cn&�(1&=)(1&&B&1

n &) (3)

holds. (Not necessary (\n(2)) or (\n(3)).)
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Then (1) converges and for its value R and nth approximants Rn we have

&R&�1&= and &Rn&R&�
4(1&=)(1&=�2)

= \ 1
1+=�4+

n

.

Proof. Let &An B&1
n & &Cn&�(1&=)(1&&B&1

n &). The alternative
inequality (3) is treated in the analogous way. For all X # K1&=�2 we obtain

&Sk(X )&�1&= \k # N, thus Sk(X ) # K1&= ,

hence S1 b } } } b Sn(X ) is well defined \X # K1&=�2 , especially for X=0 we
have

Rn=S1 b } } } b Sn(0) exists and &Rn&�1&= \n # N.

The preliminary note shows, that we get a common contraction factor for
all functions Sn on the ball K1&=�2 , so by Lemma 1

&Rn+k&Rn&=&S1 b } } } b Sn+k(0)&S1 b } } } b Sn(0)&

�\1&=�2(S1(S2 b } } } b Sn+k(O)), S1(S2 b } } } b Sn(0)))

�
1

1+=�4
\1&=�2(S2 b } } } b Sn+k(0), S2 b } } } b Sn(0))

b

�\ 1
1+=�4+

n

\1&=�2(Sn+1 b } } } b Sn+k(0), 0)

�\ 1
1+=�4+

n 4(1&=�2)(1&=)
=

\n, k # N.

Hence Rn is a Cauchy sequence and therefore converges. Further the
inequalities hold for k � � and we obtain the estimation for &R&Rn&.
This completes the proof of Theorem 1.

Remark. If we put M=C, then we have the ordinary continued
fractions, where An and Cn together play the role of the numerators. In this
case Theorem 1 is comparable with the S� leszyn� ski�Pringheim convergence
criterion cf. [5].

We know from the scalar case, that equivalence transformations (i.e.
transformation of a continued fraction into another with the same
approximants for all n # N) are suitable to create new convergence criteria.
A simple but very useful transformation for our continued fractions is the
following
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Lemma 2. Let (Dn)/M* be any sequence with D0=E. Then the
continued fractions

A1(B1+A2( } } } )&1 C2)&1 C1

and

A� 1(B� 1+A� 2( } } } )&1 C� 2)&1 C� 1 ,

with

A� n=AnDn , B� n=BnDn and C� n=CnDn&1 for n # N,

are equivalent.

Proof. For S� n(X )=A� n(B� n+X )&1 C� n it follows by induction:

S� 1 b } } } b S� n(X )=S1 b } } } b Sn(XD&1
n ).

Since Dn # M*, S� (X ) exists exactly if Sn(XD&1
n ) exists, hence we have

R� n=S� 1 b } } } b S� n(0)=S1 b } } } b Sn(0)=Rn .

Let ( pn) be a sequence of numbers, pn�1, Bn # M*. If we choose
Dn=pn &B&1

n & E for n # N, then condition (2) for A� n , B� n , C� n as in
Lemma 2, implies

&AnDn D&1
n B&1

n & &CnDn&1&�(1&=)(1&&D&1
n B&1

n &)

� &AnB&1
n & &Cn& &B&1

n&1& pn&1�(1&=) \1&
1
pn+

� &AnB&1
n & &Cn& &B&1

n&1&�(1&=)
pn&1

pn pn&1

.

This leads to

Theorem 2. The continued fraction (1) converges if there exists a
sequence of numbers ( pn), pn�1 \n�1 and some =>0 with

&AnB&1
n & &Cn& &B&1

n&1&�(1&=)
pn&1

pn&1 pn
(4)

or

&An& &B&1
n Cn& &B&1

n&1&�(1&=)
pn&1
pn&1 pn

\n�2. (5)
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Proof. If (4) holds for n�2 then A� 2(B� 2+A� 3( } } } )&1 C� 3)&1 C� 2

converges by Theorem 1 and its value T� and approximants T� n satisfy

&T� &�1&= and &T� n&�1&=, furthermore &B&1
1 &=

1
p1

�1.

hence by the Neumann series: S� 1(T� n)=R� n and S� 1(T� )=R� exist. It follows
by Lemma 2 that Rn � R (n � �), for we have two equivalent continued
fractions. Condition (5) implies convergence in the analogous way.

Remark. Theorem 2 is a generalization of a further Theorem of
S� leszyn� ski�Pringheim cf. [5].

A first generalization of this Theorem is due to Denk and Riederle [1].
They need a strong additional condition for the numbers pn , which has
unpleasant consequence for applications, especially for creation of other
convergence criterions by proper choice of pn . The new results are suitable
to generalize many of the known criteria for ordinary continued fractions
to continued fractions in Banach Algebras. We renounce to specify this.

Let us have a look upon a special form of continued fractions. We
choose

Cn=E for all n # N, then (1) becomes A1(B1+A2( } } } )&1)&1. (6)

In this case we are able to discuss convergence also by the following
recurrence relations:

Let P&1=E, P0=0, Pn=Pn&1Bn+Pn&2An for n�1

and Q&1=0, Q0=E, Qn=Qn&1Bn+Qn&2An for n�1.

If Rn exists we have Rn=Pn Q&1
n (especially Qn # M*), therefore we call Pn

the n th numerator and Qn the n th denominator of (6).
On the other side let

Q(k)
&1=0, Q (k)

0 =E and Q (k)
n =Q (k)

n&1 Bn+k+Q (k)
n&2 An+k ,

then Rn of (6) exists if

Q(k)
n&k # M* for all 0�k<n see [6].

For Pn and Qn we have the identity

PnQ&1
n = :

n&1

k=1

(&1)k A1B&1
1 Q0A2 Q&1

2 Q1 A3Q&1
3 } } } Qk&1Ak+1Q&1

k+1 (7)

(if Qk # M* for all k) [3].
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Now we state

Theorem 3. (6) converges if An{0, Bn # M*,

&AnB&1
n &�1&&B&1

n & (8)

and

&AnQ&1
n & &Qn& &B&1

n &�1&&B&1
n & \n # N. (9)

The value R of (6) satisfies &R&�1.

Remark. Inequality (8) ensures that Q&1
n exists, so the left side of (9)

makes sense, subsequently (8) follows immediately from (9).

Proof of Theorem 3. Let Gn := [X # M | &XB&1
n & � &B&1

n &], then
Sn(X )=An(Bn+X )&1 exists \X # Gn , because An{0 and (8) implies
&B&1

n &<1.
Further (8) guarantees

&Sn(X ) B&1
n&1&�&An(Bn+X )&1& &B&1

n&1&�
&AnB&1

n &

1&&B&1
n &

&B&1
n&1&�&B&1

n&1&,

hence Sn(X ) # Gn&1 \X # Gn .
Because 0 # Gn \n # N, we have

Rn=S1 b } } } b Sn(0) exists and furthermore Qn # M*.

By the recurrence formula in connection with (8) it follows:

&Qn&=&(Qn&1+Qn&2An B&1
n ) Bn&�

&Qn&1&&&Qn&2& &AnB&1
n &

&B&1
n &

�
1

&B&1
n &

&Qn&1&&\ 1
&B&1

n &
&1+ &Qn&2&

hence

&Qn&&&Qn&1&�\ 1
&B&1

n &
&1+ (&Qn&1&&&Qn&2&)
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and therefore

&Qn&&&Qn&1&�\ 1
&B&1

n &
&1+ } } } \ 1

&B&1
2 &

&1+ (&Q1&&&Q0&)

�\ 1
&B&1

n &
&1+ } } } \ 1

&B&1
1 &

&1+
�

&AnB&1
n &

&B&1
n &

} } }
&A1B&1

1 &

&B&1
1 &

>0,

so &Qn& strictly increases.
Thus

:
�

k=1

1
&Qk&1&

&
1

&Qk&

converges. (9) and the above computation imply

1
&Qk&1&

&
1

&Qk&

=
&Qk&&&Qk&1&

&Qk&1& &Qk&

�
1&&B&1

k &

&B&1
k &

} } }
1&&B&1

1 &

&B&1
1 &

1
&Qk& &Qk&1&

=
(1&&B&1

k &) &Qk&2&

&B&1
k & &Qk&

} } }
(1&&B&1

2 &) &Q0&

&B&1
2 & &Q2&

(1&&B&1
1 &)

&B&1
1 & &Q1&

�&AkQ&1
k & &Qk&2& } } } &A2Q&1

2 & &Q0& &A1Q&1
1 &.

Thus

:
�

k=1

&A1Q&1
1 & &Q0& &A2 Q&1

2 & } } } &Qk&2& &AkQ&1
k &

converges and by (7) we obtain limn � � Rn=limn � � PnQ&1
n exists.

At last &Q0&=&E& implies

:
�

k=1

1
&Qk&1&

&
1

&Qk&
�1

and so &R&�1.
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Using the transformation method in a similar way like above we obtain:

Theorem 4. Let An{0, Bn # M* then (6) converges, if there exist real
numbers pn�1 such that

&AnB&1
n & &B&1

n&1&�
pn&1

pn&1 pn

and

&AnQ&1
n & &Qn& &B&1

n & &B&1
n&1&�

pn&1
pn&1 pn

, \n�2

and strict inequality holds for at least one n.

Proof. We have to use another equivalence transformation:
For Dn # M* \n�1 we put

A� 1=A1D1 , A� 2=A2D2 , A� n=D&1
n&2AnDn , n�3 and

B� 1=B1D1 , B� n=D&1
n&1BnDn , n�2.

A� 1(B� 1+A� 2( } } } )&1)&1 and (6) are equivalent. For the n th numerators
and denominators we have P� n=Pn Dn and Q� n=QnDn . This follows by
induction (compare [6]).

Now we choose Dn=p1 } } } pn &B&1
1 & } } } &B&1

n & E, then

A� 2(B� 2+A� 3( } } } )&1)&1 (10)

complies with the prerequisites of Theorem 3. Thus (10) tends to T� # M.
The strict inequality for at least one n�2 ensures that A� 1(B� 1+T� )&1 and

all its approximants exist. Altogether (6) converges.

Remarks. 1. Both Theorem 3 and Theorem 4 are generalizations of
the well-known scalar convergence criteria, similar to Theorem 1 and
Theorem 2. The outstanding property of these results is, that if we put
M=C we have exactly the S� leszyn� ski�Pringheim results.

2. Theorem 3 and Theorem 4 of course hold in the analogous way if
we consider continued fractions (B1+(B2+( } } } )&1 C3)&1 C2)&1 C1 .
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